

ADVANCED SUBSIDIARY GCE UNIT MATHEMATICS

4728/01

Mechanics 1
MONDAY 21 MAY 2007

Morning

Time: 1 hour 30 minutes

Additional Materials: Answer Booklet (8 pages) List of Formulae (MF1)

INSTRUCTIONS TO CANDIDATES

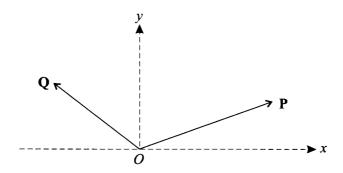
- Write your name, centre number and candidate number in the spaces provided on the answer booklet.
- Answer all the questions.
- Give non-exact numerical answers correct to 3 significant figures unless a different degree of accuracy is specified in the question or is clearly appropriate.
- The acceleration due to gravity is denoted by $g \, \text{m s}^{-2}$. Unless otherwise instructed, when a numerical value is needed, use g = 9.8.
- You are permitted to use a graphical calculator in this paper.

INFORMATION FOR CANDIDATES

- The number of marks is given in brackets [] at the end of each question or part question.
- The total number of marks for this paper is 72.

ADVICE TO CANDIDATES

- Read each question carefully and make sure you know what you have to do before starting your answer.
- You are reminded of the need for clear presentation in your answers.

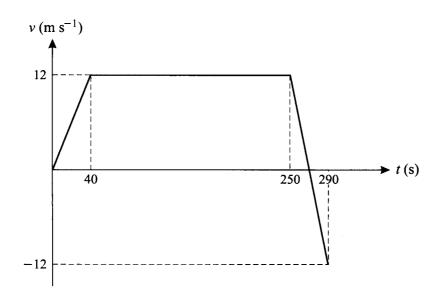

This document consists of 6 printed pages and 2 blank pages.

© OCR 2007 [H/102/2695]

OCR is an exempt Charity

[Turn over

1



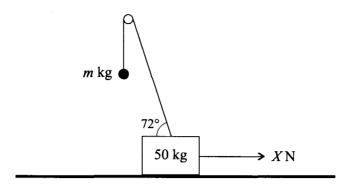
Two horizontal forces \mathbf{P} and \mathbf{Q} act at the origin O of rectangular coordinates Oxy (see diagram). The components of \mathbf{P} in the x- and y-directions are 14 N and 5 N respectively. The components of \mathbf{Q} in the x- and y-directions are -9 N and 7 N respectively.

(i) Write down the components, in the x- and y-directions, of the resultant of \mathbf{P} and \mathbf{Q} . [2]

(ii) Hence find the magnitude of this resultant, and the angle the resultant makes with the positive x-axis. [4]

2

A particle starts from the point A and travels in a straight line. The diagram shows the (t, v) graph, consisting of three straight line segments, for the motion of the particle during the interval $0 \le t \le 290$.


(i) Find the value of t for which the distance of the particle from A is greatest. [2]

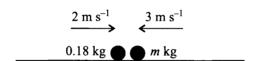
(ii) Find the displacement of the particle from A when t = 290. [3]

(iii) Find the total distance travelled by the particle during the interval $0 \le t \le 290$. [2]

© OCR 2007

3

A block of mass $50 \,\mathrm{kg}$ is in equilibrium on smooth horizontal ground with one end of a light wire attached to its upper surface. The other end of the wire is attached to an object of mass $m \,\mathrm{kg}$. The wire passes over a small smooth pulley, and the object hangs vertically below the pulley. The part of the wire between the block and the pulley makes an angle of 72° with the horizontal. A horizontal force of magnitude $X \,\mathrm{N}$ acts on the block in the vertical plane containing the wire (see diagram).


The tension in the wire is T N and the contact force exerted by the ground on the block is R N.

(i) By resolving forces on the block vertically, find a relationship between T and R. [2]

It is given that the block is on the point of lifting off the ground.

- (ii) Show that T = 515, correct to 3 significant figures, and hence find the value of m. [4]
- (iii) By resolving forces on the block horizontally, write down a relationship between T and X, and hence find the value of X.

4

Two particles of masses $0.18 \,\mathrm{kg}$ and $m \,\mathrm{kg}$ move on a smooth horizontal plane. They are moving towards each other in the same straight line when they collide. Immediately before the impact the speeds of the particles are $2 \,\mathrm{m \, s^{-1}}$ and $3 \,\mathrm{m \, s^{-1}}$ respectively (see diagram).

- (i) Given that the particles are brought to rest by the impact, find m. [3]
- (ii) Given instead that the particles move with equal speeds of 1.5 m s⁻¹ after the impact, find
 - (a) the value of m, assuming that the particles move in opposite directions after the impact, [3]
 - (b) the two possible values of m, assuming that the particles coalesce. [4]

_				
5	A particle P is projected vertice	cally unwards, fron	n horizontal ground.	with speed 8.4 m s ⁻¹

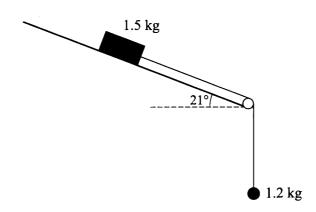
(i) Show that the greatest height above the ground reached by P is 3.6 m. [3]

A particle Q is projected vertically upwards, from a point 2 m above the ground, with speed u m s⁻¹. The greatest height **above the ground** reached by Q is also 3.6 m.

(ii) Find the value of
$$u$$
. [2]

It is given that P and Q are projected simultaneously.

- (iii) Show that, at the instant when P and Q are at the same height, the particles have the same speed and are moving in opposite directions. [6]
- A particle starts from rest at the point A and travels in a straight line. The displacement s m of the particle from A at time t s after leaving A is given by


$$s = 0.001t^4 - 0.04t^3 + 0.6t^2$$
, for $0 \le t \le 10$.

(i) Show that the velocity of the particle is
$$4 \text{ m s}^{-1}$$
 when $t = 10$. [3]

The acceleration of the particle for $t \ge 10$ is (0.8 - 0.08t) m s⁻².

(ii) Show that the velocity of the particle is zero when
$$t = 20$$
. [5]

(iii) Find the displacement from A of the particle when
$$t = 20$$
. [6]

One end of a light inextensible string is attached to a block of mass $1.5 \, \text{kg}$. The other end of the string is attached to an object of mass $1.2 \, \text{kg}$. The block is held at rest in contact with a rough plane inclined at 21° to the horizontal. The string is taut and passes over a small smooth pulley at the bottom edge of the plane. The part of the string above the pulley is parallel to a line of greatest slope of the plane and the object hangs freely below the pulley (see diagram). The block is released and the object moves vertically downwards with acceleration $a \, \text{m s}^{-2}$. The tension in the string is $T \, \text{N}$. The coefficient of friction between the block and the plane is 0.8.

- (i) Show that the frictional force acting on the block has magnitude 10.98 N, correct to 2 decimal places. [3]
- (ii) By applying Newton's second law to the block and to the object, find a pair of simultaneous equations in T and a. [5]
- (iii) Hence show that a = 2.24, correct to 2 decimal places. [2]
- (iv) Given that the object is initially 2 m above a horizontal floor and that the block is 2.8 m from the pulley, find the speed of the block at the instant when
 - (a) the object reaches the floor, [2]
 - (b) the block reaches the pulley. [4]

© OCR 2007 4728/01 Jun07

1(i)	X = 5	B1	X=-5 B0. Both may be seen/implied in (ii)
	Y = 12	B1	No evidence for which value is X or Y available from (ii)
			award B1 for the pair of values 5 and 12 irrespective of
		[2]	order
(ii)	$R^2 = 5^2 + 12^2$		For using $R^2 = X^2 + Y^2$
(11)		M1	
	Magnitude is 13 N	A1	Allow 13 from X=-5
	$\tan \theta = 12/5$	M1	For using correct angle in a trig expression
	Angle is 67.4°	A1	SR: p=14.9 and Q=11.4 giving R=13+/-0.1 B2,
		[4]	Angle = $67.5 + /-0.5 B2$
2(i)	$250 + \frac{1}{2}(290 - 250)$	M1	Use of the ratio 12:12 (may be implied), or $v = u+at$
-(1)	200 /2 (200 200)	1,11	cov or the ratio 12:12 (may ov imphou), or viva av
	t = 270	A1	
	270	[2]	
(ii)		<u>L21</u> M1	The idea that area represents displacement
(11)	½ x40x12+210x12+½x20x12-	M1	
		IVI I	Correct structure, ie triangle1 + rectangle2 + triangle3 -
	½x20x12 or ½ x40x12+210x12		triangle4 with triangle3 = triangle4 , triangle1 +
	or $\frac{1}{2}$ x(210+250)x12etc		rectangle2, trapezium1&2, etc
	Displacement is 2760m	A 1	
		[3]	
(iii)	appropriate structure, ie triangle +	M1	All terms positive
	rectangle + triangle + triangle ,		
	triangle + rectangle + 2triangle, etc		
	Distance is 3000m	A1	Treat candidate doing (ii) in (iii) and (iii) in (ii)
		[2]	as a mis-read.
		[-]	us a fins foad.
3(i)		M1	An equation with R, T and 50 in linear combination.
3(1)	$R + T\sin 72^{\circ} = 50g$	A1	R + $0.951T = 50g$
	R + 18111/2 - 30g		K + 0.9311 - 30g
- 7	T	[2]	II. D 0 / 1 . 1. 1. 1. 1. 200
(ii)	$T = 50g/\sin 72^{\circ}$	M1	Using $R = 0$ (may be implied) and $T\sin 72^\circ = 50(g)$
	T = 515 (AG)	A1	Or better
	T = mg	B1	
	m = 52.6	B1	Accept 52.5
		[4]	
(iii)	$X = T\cos 72^{\circ}$	B1	Implied by correct
			answer
	X = 159	B1	Or better
		[2]	
4(i)	In Q4 right to left may be used as the	M1	For using Momentum 'before' is zero
(-)	positive sense throughout.		<u> </u>
	$0.18 \times 2 - 3m = 0$	A1	
	m = 0.12	A1	
	m = 0.12		3 marks nossible if a included consistently
(iia)	Mamantum after	[3]	3 marks possible if g included consistently
(iia)	Momentum after	B1	
	$= -0.18 \times 1.5 + 1.5 \text{m}$	3.61	
	$0.18 \times 2 - 3m = -0.18 \times 1.5 + 1.5m$	M1	For using conservation of momentum
	m = 0.14	A1	
		[3]	3 marks possible if g included consistently
(iib)	$0.18 \times 2 - 3m$	B1ft	ft wrong momentum 'before'
	= (0.18 + m)1.5		
	m = 0.02	B1	
	$0.18 \times 2 - 3m = -(0.18 + m)1.5$	B1ft	
	m = 0.42	B1	
	V.12	[4]	0 marks if g included
L		[4]	o marks ii g meiuucu

5(i)	_	M1	Using $v^2 = u^2 + /- 2gs$ with $v = 0$ or $u = 0$
	$8.4^2 - 2gs_{max} = 0$	A 1	
	Height is 3.6m (AG)	A1	
		[3]	
(ii)		M1	Using $u^2 = +/- 2g(ans(i) - 2)$
	u = 5.6	A 1	
		[2]	
(iii)	EITHER (time when at same height)	M1	Using $s = ut + \frac{1}{2} at^2$ for P and for Q, $a = +/-g$, expressions for
,	,		s terms must differ
	$s+/-2 = 8.4t - \frac{1}{2} gt^2$ and		Or 8.4t $(-\frac{1}{2} gt^2)=5.6t (-\frac{1}{2} gt^2)+/-2$
	$(s+/-2) = 5.6t - \frac{1}{2}gt^2$	A 1	Correct sign for g, $cv(5.6)$, $\pm/-2$ in only one equation
	t = 5/7 (0.714)	A1	cao
	(01, 2, 1)	M1	Using $v = u + at$ for P and for Q, $a = +/-g$, $cv(t)$
	$v_P = 8.4 - 0.714g$ and $v_O = 5.6 - 0.714g$	A1	Correct sign for g, $cv(5.6)$, candidates answer for t (including
	v _r o o., r.g w v _Q o o., r.g		sign)
	$v_P = 1.4 \text{ and } v_O = -1.4$	A1	cao
	77 1.1 and 70 1.1	[6]	Cuo
	OR (time when at same speed in	[o]	
	opposite directions)	M1	Using $v = u+at$ for P and for Q, $a = +/-g$
	v = 8.4 -gt and $-v = 5.6$ -gt	A1	Correct sign for g, $cv(5.6)$
	$v = 1.4 $ {or $t = 5/7 (0.714)$ }	A1	Only one correct answer is needed
	$V = 1.4 \{01 \ t = 3/7 \ (0.714)\}$	А	Only one correct answer is needed
	(with $v = 1.4$)	M1	Using $v^2 = u^2 + 2as$ for P and for Q, $a = +/-g$, $cv(v)$
	$1.4^2 = 8.4^2 - 2gs_P$ and	1,11	2001011 0000 101 4, 0 7 6, 0 7 (1)
	$(-1.4)^2 = 5.6^2 - 2gs_0$	A1	Correct sign for g, cv(5.6), candidate's answer for v (including
	(1.1)		- for Q)
	$s_P = 3.5 \text{ and } s_O = 1.5$	A1	cao
	$\{(\text{with } t=5/7)\}$		•••
	((M1	Using $s = ut + \frac{1}{2} at^2$ for P and for Q, $a = +/-g$, $cv(t)$
	$s = 8.4x0.714 - \frac{1}{2} gx0.714^2$ and		0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
	$s = 5.6x0.714 - \frac{1}{2}gx0.714^2$	A1	Correct sign for g, $cv(5.6)$, candidate's answer for t
	5 C.01101./11 /2 8.1101./11		(including sign of t if negative)
	$s_P = 3.5 \text{ and } s_O = 1.5$	A1	cao}
	of the unit of the		4 ()
	OR (motion related to greatest height		
	and verification)	M1	Using $v = u+at t$ for P and for Q, $a = +/-g$
	0 = 8.4 -gt and $0 = 5.6 -gt$		5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
	t = 6/7 and $t = 4/7$	A1	Both values correct
	$v_P = 8.4 - 0.714g$ and $v_O = 5.6 - 0.714g$		mid-interval t $(6/7+4/7)/2 = 0.714$
	$\{0 = v_P - g/7 \text{ and } v_Q = 0 + g/7\}$		{Or semi-interval = $6/7-4/7$ }/2=1/7}
	$v_P = 1.4$ and $v_Q = -1.4$	A1	cao
	$s_P = 8.4 \times 0.714 - \frac{1}{2} \text{ gx} \cdot 0.714^2 \text{ and}$	M1	$s = ut + \frac{1}{2} at^2$ for P and for Q, correct sign for g,
	$s_0 = 5.6x0.714 - \frac{1}{2}gx0.714^2$	1/11	cv(5.6) and $cv(t)$
	$\{ s_P = 0/7 - \frac{1}{2}(-g)x(1/7)^2 \text{ and } \}$		$\{s = vt - \frac{1}{2} at^2 \text{ for P } and \ s = ut + \frac{1}{2} at^2 \text{ for Q} \}$
	$s_Q = 0/7 + \frac{1}{2} gx(1/7)^2$	A1	(5 /2 w 1011 w/w 5 w /2 w 101 Q)
	$s_{Q} = 0.77 + 72 \text{ gA}(177) $ $s_{P} = 3.5 s_{Q} = 1.5$	111	
	$\{ s_P = 0.1 \ s_Q = 0.1 \}$	A1	cao
	(op 0.1 o() 0.1)	111	continued
			Communica

5(iii)	OR (without finding exactly where or		
	when)	M1	Using $v^2 = u^2 + 2as$ for P and for Q, $a = +/-g$, $cv(5.6)$,
	2 2		different expressions for s.
cont	${v_P}^2 = 8.4^2 - 2g(s+/-2)$ and		Correct sign for g, $cv(5.6)$, $(s+/-2)$ used only once
	2 2		cao. Verbal explanation essential
	$v_Q^2 = 5.6^2 - 2g[(s+/-2)]$ $v_P^2 = v_Q^2$ for all values of s so that	A1	Using $v = u+at t$ for P and for Q, $a = +/-g$
			Correct sign for g, correct choice for velocity of zero,
	the speeds are always the same at the		cv(5.6)
	same heights.	A1	
		M1	
	0 = 8.4 - gt and $0 = 5.6 - gt$	A1	
	$t_P = 6/7$ and $t_O = 4/7$ means there is a		
	time interval when Q has started to		cao. Verbal explanation essential
	descend but P is still rising, and there		•
	will be a position where they have the		
	same height but are moving in		
	opposite directions.	A1	

6(i)		M1	For differentiating s
	$v = 0.004t^3 - 0.12t^2 + 1.2t$	A1	Condone the inclusion of +c
	$v(10) = 4 - 12 + 12 = 4 \text{ms}^{-1}$ (AG)	A 1	Correct formula for v (no +c) and t=10
L		[3]	stated sufficient
(ii)		M1	For integrating a
	$v = 0.8t - 0.04t^2 + (+C)$	A 1	
	8 - 4 + C = 4	M1*	Only for using $v(10) = 4$ to find C
	$v = 0.8x20 - 0.04x20^2 (+C)$	M1	
	v(20) = 16 - 16 = 0 (AG)	DA1	Dependant on M1*
		[5]	
(iii)		M1	For integrating v
	$S = 0.4t^2 - 0.04t^3/3 (+K)$	A1	Accept $0.4t^2 - 0.013t^3$ (+ ct +K, must be
			linear)
	s(10) = 10 - 40 + 60 = 30	B1	
		M1	For using $S(10) = 30$ to find K
	$40 - 40/3 + K = 30 \implies K = 10/3$	A 1	Not if S includes ct
			term
	S(20) = 160 - 320/3 + 10/3 = 56.7m	B1	Accept 56.6 to 56.7, Adding 30 subsequently is not isw,
	OR	[6]	hence B0
	s(10) = 10 - 40 + 60 = 30	B1	
		M1	For integrating v
	$S = 0.4t^2 - 0.04t^3/3$	A 1	Accept $0.4t^2 - 0.013t^3$ (+ ct +K, must be linear)
		M1	Using limits of 10 and 20 (limits 0, 10 M0A0B0)
	S(20) - S(10) = 26.6, 26.7	A1	For $53.3 - 26.7$ or better (Note $S(10) = 26.7$ is
			fortuitously correct M0A0B0)
	displacement is 56.7m	B1	Accept 56.6 to 56.7

7(i)	$R = 1.5g\cos 21^{\circ}$	B1	
. (5)	3	M1	For using $F = \mu R$
	Frictional force is 10.98N	A1	Note 1.2gcos21=10.98 fortuitously, B0M0A0
	(AG)	[3]	3,
(ii)		M1	For obtaining an N2L equation relating to the block in which F,
			T, m and a are in linear combination or
			For obtaining an N2L equation relating to the object in which
			T, m and a are in linear combination
	$T + 1.5g\sin 21^{\circ} - 10.98 = 1.5a$	A2	-A1 for each error to zero
	1.2g - T = 1.2a	A2	-A1 for each error to zero
		[5]	Error is a wrong/omitted term, failure to substitute a numerical
			value for a letter (excluding g), excess terms. Minimise error
			count.
(iii)	T - 1.5a = 5.71	M1	For solving the simultaneous equations in T and a for a.
	and $1.2a + T = 11.76$		
	$a = 2.24 \tag{AG}$	A1	Evidence of solving needed
		[2]	
(iva)	$v^2 = 2 \times 2.24 \times 2$	M1	For using $v^2 = 2as$ with cv (a) or 2.24
	Speed of the block is 2.99ms ⁻¹	A 1	Accept 3
		[2]	
(ivb)		M1	For using $T = 0$ to find a
	a = -3.81	A 1	
	$v^2 = 2.99^2 + 2 \text{ x (-3.81) x 0.8}$	M1	For using $v^2 = u^2 + 2as$ with $cv(2.99)$ and $s = 2.8 - 2$ and any
			value for a
	Speed of the block is 1.69ms ⁻¹	A 1	Accept art 1.7 from correct work
		[4]	